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Abstract-The infinitesimal breathing motions of long cylindrical tubes and hollow spherical shells of
arbitrary wall thickness subjected to a finite deformation field caused by uniform internal and/or external
pressures are investigated. Aneo-Hookean material with a material constant varying continuously along the
radial direction is used. The shell is first subjected to finite static deformations and is then exposed to a
secondary dynamic displacement field. Based on the theory of small deformations superposed on large
deformations, closed form expressions are obtained for the frequency of small oscillations about the highly
prestressed state. Frequency versus initial deformation parameter curves are given for several
nohomogeneity functions and for various wall thicknesses.

INTRODUCTION
The static and dynamic behaviors of thick and thick-walled elastic bodies undergoing large
deformations have been investigated extensively by several authors. The rigorous finite elasticity
theory in conjunction with the theory of small deformations superposed on large deformations [IJ
has been used to analyze the stability and the vibrational characteristics of such bodies [2-7]. The
early works of Knowles [8, 9] constituted the basis for later papers[IO, 11] on finite amplitude
oscillations. In most cases, the material of the body is assumed to be isotropic, elastic,
incompressible and homogeneous. To a certain extent, Nowinski and Shahinpoor[12J considered
the effect of nonhomogeneity in their study concerned with the breathing motions of hollow
spherical shells of arbitrary wall thickness subjected to finite deformations caused by a uniform
internal pressure. In[12], a continuous nonhomogeneity is introduced; the material of the shell is
of neo-Hookean type with the material constant varying as a function of the radial distance.
However, the results obtained in[l2] indicate, incorrectly, an erratic behavior of the shells.

The questionable results of[12J have led the present authors to re-examine the problem and
also extend the investigation to circular cylindrical shells. In the present work, the effect of initial
internal and/or external pressures on the free breathing motions of hollow cylindrical and
spherical shells is studied. The material of the shells is assumed to be of neo-Hookean type, with
the material constant varying as a function of the radial coordinate. For cylindrical shells, both
the initial and the secondary deformation fields are assumed to have axial symmetry. For
spherical shells, both fields are taken to be spherically symmetric. The theory of small
displacements superposed on large elastic deformations[l] is used in the formulation of the
problems. More specifically, the deformation and the stress fields of the elastic body under the
external forces are determined by a semi-inverse procedure and then an infinitesimal dynamic
displacement field is superposed on the previously determined equilibrium state. The field
equations governing the small oscillations superposed on large elastic deformations have closed
form solutions for both cylindrical and spherical shells. The characteristic equations of both
problems, which contain the frequencies of small oscillations as the unknown, are obtained from
their respective boundary conditions.

FORMULATION OF THE PROBLEMS

l. Cylindrical shells
Consider a long, circular cylindrical shell of arbitrary wall thickness with an inner radius At

and an outer radius A 2 in the undeformed state. Assume that the material of the shell is isotropic,
perfectly elastic and incompressible with a strain energy density function given by W = C1(I - 3)
where I is the first strain invariant and C1 is the only material constant. If the material is
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nonhomogeneous with respect to the radial coordinate then, C is a function of this coordinate.
Let

(1)

be the inner and the outer radii of the shell in the finitely deformed state caused by the static
pressures ql and q2 applied, respectively, on the inner and the outer curved surfaces. A material
point at coordinates (r, 6, z) in the deformed state is at coordinates (R, 6, z) in the undeformed
state. The corresponding stress field is given by (see, for example, the derivations in[13])

711 =-L(r)-qt,

r 2722 = <I>(Q-2 - Q2) - L(r) - qt,

733 = <1>(1- Q2) - L(r) - qt,

where

<I>=2
aw
aI

L(r)= r <I>(Q2_Q_2)dr,
JaJ r

and, due to the incompressibility of the material,

(2)

(3)

The differential pressure q = q2 - q I required to produce the prescribed deformation field is given
by (Ref. [5], eqn (3»,

(4)

We now consider a state of free, infinitesimal radial oscillations about the finitely deformed
state such that the only nonzero incremental displacement component is WI = wl(r, t) in the radial
direction. The induced incremental stress field is given by (see, for example, Ref. [13], Chpt. 4)

where

fll = -2PWI.r +p',

r2f22 = 2PWI.r +p',

f33 = p',

fl2 = f23 = f31 = 0,

(5)

(6)

and p I is an unknown pressure.
The equations of motion in 6 and z directions indicate that pi is a function of rand t only.

Then, the secondary displacement field is governed by the equation of motion in the radial
direction,

and by the incompressibility condition in the secondary deformation field,

1
W'. r +, WI = O. (8)
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In eqn (7), p denotes the current mass density, and a dot denotes differentiation with respect to
time. Here, we note that eqn (7) reduces to eqn (5) of Ref. [5] if we substitute cP := const. in eqn (7)
and v := zero in eqn (5) of Ref. [5] and make use of the equation WI,rr := -(2Ir)wI,r which is a
direct result of the incompressibility condition.

The boundary conditions, obtained by the requirement that the secondary surface tractions
vanish, are

2<1>WI,r +p':= 0 on r:= ai, a2

We seek solutions to the functions WI and p' in the form

WI(r, t):= u(r) e/w
',

p'er, t):= fer) e/W
'

Satisfying eqns (7) and (8) by (10) results in two ordinary differential equations,

2 -2 [<I>(Q-I - Q)2 Q(1- Q2) d<l>] 2 I
<I>(Q -Q )U,rr-2 r r dQ U,r+f,r:=-pw U,U,r+,U:=O,

which are solved for u(r) and fer) in closed form:

U := Dlr,

f:= {-pw 2
In r +J~(1- Q2) {2+~:~}dr} D+E

(9)

(10)

(11)

(12)

where D and E are integration constants. Substituting u(r) and fer) into the boundary
conditions, eqn (9), and requiring that the determinant of the coefficient matrix vanishes for a
non-trivial solution, we obtain the characteristic equation of the problem, and hence an
expression for the frequencies of small oscillations;

8 l Q

,

w
2

:= 2 [(1-A 2K)] Q2 <l>Q
3

dQ
pAl In 2 -

A (1- K)

(13)

where K := I-p./, A := At/A2. If the material is homogeneous, then <I> is constant and the
resulting expression corresponds to eqn (29) of Ref. [5]. Furthermore, if the primary deformation
is infinitesimal, then K -+ 0, and the expression thus obtained reduces to the well known classical
result of small radial oscillations of cylindrical shells (Ref. [9], eqn (37».

For simplicity, we now assume a quadratic form for <1>. If <1>1, <l>m, and <1>0 denote, respectively,
the material constants on the inner, middle, and the outer surfaces, then we can write

where

A2

B I := (1- A)d2(<I>o/<l>/) - 4(<I>m 1<1>1) +2},

A l+A
B2 := 1- A (<1>0/<1>; -I)--A- B I ,

Substituting eqn (14) into eqn (13) and noting that

RIA I := KI/2Q/(Q2_l)1/2,

QI:= Atlal:= 11(1- K)1/2,

Q2:= A 21a2:= 1/(1- A2K)1/2,

(14)

(15)

(16)

(17)

(18)
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(19)

Performing the integration, for K t:- 0, the non-dimensionalized frequency expression is given by

and for K =0,

(21)

where

(22)

2. Spherical shells t
In this section we consider a spherical shell whose undeformed inner and outer radii are

denoted, respectively, by AI and A 2• In the spherically symmetric deformation state produced by
an internal pressure ql and an external pressure q2, the new inner and outer radii are at = 1L1At,
a2 = 1L2A 2• For a neo-Hookean material, we have

(23)

The secondary dynamic displacement field WI = wl(r, t), W2 = W3 = °is now superposed onto
the initially deformed shell. The equations governing this secondary state are

""Q4 +{~(8Q_4Q4_Q-2)_2Q2(Q3-1)d<l>} +' = ..
'¥ WI." r r dQ WI., P., PWt,

and the incompressibility condition

2
WI., +, WI = 0,

where

p' = p'(r, t),

Q =Rlr =! [r 3+ A/(1-1L13)t3
.

r

(24)

(25)

(26)

As in the case of cylindrical shells, eqn (24) reduces to eqn (15) of Ref. [5] if we substitute
<I> = const. in eqn (24), assume spherical symmetry and make use of the incompressibility
condition in the latter. In this case, eqn (16) of Ref. [12] also becomes identical with eqn (24).

tThe details of derivations are omitted here since they are essentially the same as those given in Ref. {12}.
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However, the term introducing the material nonhomogeneity (i.e. the term including d4l/dQ) is
erroneous in eqn (16) of Ref. [12].

The boundary conditions governing the secondary displacement field are given by

(27)

Assuming again WI = u(r) e1
"" and pi = f(r) e1

"", and solving eqns (24) and (25) subjected to the
boundary conditions, eqn (27), we obtain

(28)

where K = 1- (adA I)3.
In order to compare results with those given in[l2], we now choose a cubic variation for the

material constant in the following form

(29)

The corresponding frequency expression for K'I- 0 is given by

-2 pA/C.I/ 2(1_K)1/3(1_A 3K)1/3 {(2-K) A3(2-A 3K)
w =~ = (1- A3Ki /3 - A(I- K)1/3 (I-K)'/3 (1- A3K)'/3

B 3 [24(1- K)2+ 7(1- K)+4 24(1- A3K)2+7(1_ A3K)+4
+Bo 4(1 - K)'/3 4(1- A3K)'/3

+31n A{I-(I-K)I/3} +2\/3 tan-I ( 2 +_1_)
{I - (I - A3K)1/3} \!3(1 - A3K)'/3 \!3

- 2\!3 tan-I ( 2 _ 1/3+-
1 )J}. (30)

\!3(1- K) \!3

When K = 0, eqn (30) becomes indeterminate. However, using L'Hospital rule, for K = 0 we
obtain

(31)

If the material is homogeneous, then B3 = 0 and eqn (31) reduces to the classical result of pure
infinitesimal radial oscillations for spherical shells (Ref. [14], eqn (3.2».

DISCUSSION OF THE RESULTS

1. Cylindrical shells
Figure 1 shows c.i/ as plotted against the deformation parameter K = 1-/J-1

2 for various
AdA2ratios corresponding to 41 = 41dBI(R/Al)~ (i.e. when only the quadratic term is retained).
It is seen that, for a given A 1/A2 ratio w2 increases sharply with an increasing net inward pressure
(0 < K < 1) while it decreases with an increasing net outward pressure (-00 < K < 0). In the latter,
the frequency approaches zero asymptotically as K approaches -00. This indicates that the shell
softens when inflated and it fails without bound in a mode of radial expansion. An interesting
observation is that when K = 0, w2= pAI2w 2/41, = 4 for all AdA2 ratios.

The results corresponding to a nonhomogeneity function given by 41 = 41dBI(R/AI)2 + B3} are
shown in Fig. 2 for a shell of AdA2= 0.80. The shell shows a hardening behaviour in the
compression region and a softening behaviour in the tension region for all c/Jo/c/J, ratios. Noting
that 410/41, = 1 corresponds to the homogeneous case, we observe that compared to the
homogeneous case, the frequencies are higher when 410 > 41, and lower when 410 < 41,.

Figure 3 shows w2 as plotted against K for AI/A2=0.80 with a nonhomogeneity function
41 = 41dB2(R/AI) + B3}. For 0< K < I, i.e. in the compression region, the shells show a definite
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Fig. 1, Frequency versus initial deformation parameter for a cylindrical shell of various wall thicknesses (only
thequadratic term is retained).
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Fig. 2. Frequency versus initial deformation parameter of a cylindrical shell, for various nonhomogeneity
factors (no linear term).

hardening behavior when tPO/cPl ~ 1, ct>o/ct>, = 1 corresponding to the homogeneous case. For
ct>O/<I>i > 1, however, the shells show a softening behavior in the early compression regions, and a
hardening behavior as K becomes larger. A close examination of eqn (30) shows that w2 becomes
a complex number for K <0 due to the presence of K1/2 associated with the linear term. For
reasons which we are unable to explain physically, this forces us mathematically to conclude that
pure radial oscillations cannot exist for net outward pressure, K < 0, when there is a linear
variation of the material constant as a function of the radial coordinate.

2. Spherical shells
In order to compare the results with those of Ref. [12], a representative example is worked out

for A 1/A 2 = 0.80 for various nonhomogeneity distributions, B3/Bo = 0 (homogeneous case), 0.25,
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Fig. 3. Frequency versus initial deformation parameter for a cylindrical shell. for various nonhomogeneity
factors (general linear variation).
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Fig. 4. Frequency versus initial deformation parameter ofaspherical shell, for various nonhomogeneity factors
(q. = BQ +B,(R/A,)').

0.50, 0.75 and 1.0. In all cases the shell hardens in the compression region and softens in the
tension region, and it fails w2 = 0) in a mode of radial expansion. The curves do not show the
erratic behavior indicated in[l2].
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